Fri, 10 May 2024 | 10 am | DBS Conference Room 1

Hosted by Prof Antonia Monteiro

The evolution of inter-sexual mimicry and female-limited polymorphisms in damselflies

By Beatriz Willink
Department of Zoology, Stockholm University &
Department of Biological Sciences,
National University of Singapore

About the Speaker

Beatriz Willink received her PhD in 2018 from Lund University, Sweden. She was then awarded an "International Postdoctoral Grant" from the Swedish Research Council (2021-2024), to investigate the genetic basis inter-sexual mimicry in pond damselflies. This postdoctoral research was hosted by Stockholm University, Sweden, and the National University of Singapore. Beatriz is now starting as a Research Fellow at the National University of Singapore.

Phenotypic polymorphisms provide a unique opportunity to study how novel traits evolve, and how they map to underlying genotypes. My research bridges phylogenetic and genomic approaches to understand the evolution of inter-sexual mimicry, a complex phenotypic polymorphism where some individuals of one sex gain a fitness advantage because they resemble the opposite sex. In pond damselflies (family Coenagrionidae), male-coloured females obtain a frequency-dependent advantage of reduced maleharassment, and thus persist as polymorphism with non-mimicking females. My research shows that inter-sexual mimicry has originated multiple times across this diverse insect group, in response to ecological conditions that increase the rate of pre-mating interactions and thus the intensity of sexual conflict. In the Forktail damselflies (genus Ischnura), inter-sexual mimicry has evolved in association with a novel genetic sequence that is uniquely present in male-mimicking females, and which carries a molecular signature of the frequencydependent process that maintains the polymorphism locally. In the near future, I plan to expand this multifaceted research agenda to investigate the function of the newly uncovered male-mimicry locus. This new research direction will advance damselflies as study systems for integrative research, linking the origin, function, and developmental basis of evolutionary innovations.