3i diSPIM data Reconstruction with Slidebook

Multi-View Reconstruction in Slidebook:

Step 1: Crop data if necessary. (To reduce time processing)

(i) Note cropping of scans:

(Optional) Crop the sample dimensions to reduce unnecessary data size in processing

- 1) Double-click the image capture you would like to crop
- 2) Go to Analyze -> Select -> define selection cube

3) Make sure the number of pixels cropped in **Beginning** and **End** of the X-axis is same (Symmetric image along X-axis during post-processing). Click **OK** after selection

Define Selection Cu	be		\times
Beginning X: 0	End	Extent X: 256	ОК
Y: 0	Y: 736	Y: 736	Cancel
Z: 0	Z: 292	Z: 292	Apply

4) Select Analyze->Crop

Note: To remove any channel not required, **Analyze->Crop->Remove channel.**

(ii) Note: If distage scans:

1) Make sure when you right click on the properties of dataset, under comments, there is 'MLS stage', if not Enter into **Comments, 'MLS Stage'.**

Comments:	MLS Stage	~	
			ОК
		~	Cancel
Capture Info -			
	Date: 11/11/2020 16:34		
Capt	ure type: 3D Capture		
Capt Microns per p	ure type: 3D Capture ixel (XY): 0.162 um (C13440-	20C S/N: 300755 - 6.50 um / 1.00x)	

Step 2: Detect interest points for registration of the two sides of the scan

A. POI Detection for Registration (preferred if beads in sample)

Pre-processing step to detect interest points in the sample so as to register the two channels before fusion/ deconvolution.

- 1) Select the image capture you would like to perform registration
- 2) Home -> Light Sheet-> Multi-view Reconstruction -> POI Detection + Registration

Typical settings

Note: Start sigma and end sigma <u>are the size of the interest points in</u> the sample. Start with the default start sigma (1.8) and default end sigma (1.8) – number of sigmas 1 first.

If the registration keeps failing, the sample interest points may be bigger or smaller than the default one. You may then vary the sigma values if the interest points can be smaller/bigger than typical values listed here. Based on the start and end sigma value range, change the number of sigmas (for example 1.4 - 1.9; number of sigmas = 5)

Take note of the chosen affine matrix generated.

Observe the registration preview. If satisfactory, click 'OK'.

Use the following registration only if POI detection fails, in step 2:

B. Local XCOR Registration (if POI detection fails)

<u>Alternatively</u> to the POI Detection + Registration you can use 3i's Local Cross Correlation Registration: Select (highlight) the capture you would like to work with. In the Home tab of SlideBook, select **LightSheet > Multiview Reconstruction > Local XCor Registration**. The 3i Local XCor Registration dialog and the **3D Volume Viewer** will open.

	🚽 👪 👗 🖹 🚔 40x stage fla	t_ICR9.sld - SlideBook		
Focus Capture	Anayze Scripting Mod Special Multi- Photo- Capture + photon + manipulation + Acquire	Uget Support Administration Uget Export View Creation Skeet Import Uget Creation Marianas LightSheet Multiview Reconstruction Import Import LLS TIFF Files Process LLS Virtual Silt Process SR-SIM Generate SR-SIM OTF Import Interest Points Generate Synthetic	POI Detection - Registration Local XCor Registration Bounding Box Channel Transforms	
LXCOR Registration Input Channels 488A / 4886 Tme Limit to: Intersect Data Bounding B Background Registration Registration Number of Iterations 2 Qua	Point 1 + + + + + + + + + + + + + + + + + +	Downsample 2 adsground 25 • Max Dist (um) 10		
Initial Translation (Um): A [0 Translation+Rote Results	tion C Translation +Rotation +X	Y Scaling (* Affine	*	
7 GPU			V Cancel	Apply

a. Input:

i. Choose the Channels for which to detect the transform

ii. Choose the *Time Point* for which to detected the transform.

iii. Select **Downsample** the data to gain speed. A downsampling value of 3 would keep only every third value. The volume size is 27 times smaller.

iv. Limit To:

i. **Intersect**: This is the data volume common to path A and Path B that has been (deskewed) rotated.

ii. **Data Bounding Box**: You can draw a Data Bounding Box in the Bounding Box 3D Volume Viewer beforehand.

b. Background:

i. **Remove Background**: If the background is not 0, it should be removed, since a better contrast improves the results.

ii. Ch1: The first channel (e.g. 488A) background value

iii. Ch2: The second channel (e.g. 488B) background value

iv. **Compute Background**: Choosing this option will compute the background, but it may be slow.

Alternatively, you can choose and enter background values based on the channel histograms.

c. Local Cross Correlation

i. **Subvolume Side Size (um)**: The process subdivides the volume in a number of smaller cube volumes. Specify the size in microns of the cube side.

NOTE: This volume needs to be small enough to offer a true localized cross-correlation, and yet large enough to include the maximum expected shifts.

ii. **Percentage Overlap**: Set the percentage overlap between a subvolume and its adjacent one.

d. Registration

i. To start the algorithm with an **Initial Shift** click **Compute Shift** and the program will run a rough estimation.

ii. **Number of Iterations**: Set the number of iterations to perform. At every iteration the current registration transform is applied to the data before the correlation process starts.

iii. Set the **Quality Threshold**: First the maximum correlation in all subvolumes is detected. Then only subvolumes with correlation quality larger than the maximum correlation times the threshold are used. iv. When looking for the correlation maxima, restrict the search for shifts less than the maximum distance in **Max Dist (um)**.

v. **Transform**: Check the box of the preferred transform. The default is **Affine**, which applies a Translation, Rotation, Scaling and Shear.

e. Check the box to GPU to use CUDA accelerated processing.

f. Click **Apply** to start the process. It might take a while depending on file size and how many different parameters it is checking.

g. The *Results* panel will present the transform.

Step 3: Registration

A. Home-> Multiview Reconstruction-> Registration

Make sure the affine matrix values in the **default transform** <u>matches</u> the affine matrix generated in POI detection minimum error value in the previous step. Click **Apply, OK**

diSPIM Multiview Registration			×
Distance: 10 px	Channel:	561A	•
Transform: C Rigid C Translation @ Affine		2	
Default Transform: 0.935019016265869, -0.0062367	38525331,	-0.04763724	6549129,
Register all time points individually Copy registration from selected timepoint and channel to all timepoints and channels			
Citation Information: imagei net/Multiview-Reconstruction			
Reset OK	Cano	:el	Apply

Note: Sometimes this module 'Registration' cannot be opened and shows error. In this case, ignore the error and proceed to the next step to B. check registration, as below.

B. Check registration

 $\ensuremath{\textbf{Right click}}$ on the image capture, that you have just performed registration

Click Auxiliary data

Check if the **MLS registration** matches the best registration performed during POI detection + registration having the least error

Auxiliary Data	×
Channel: MLS Registration	•
Time (Frame)	MLS Registration
0	0.94
1	-0.01
2	-0.05
3	9.01
4	0.07
5	0.99
6	0.01
7	0.86
8	0.04
9	0.00
10	1.02
11	-0.16

Step 4: Create a new slide.

Copy the **defined data** and **PSF files** in it.

PSF File from:

(Z:\confocalcore\For diSPIM Users\Using Slidebook for Deconvolution - Post-acquisition\PSFlibrary.sld)

You can save	it as	'ForDeconvolution	XYZ'.
		-	

Γ	ForDecon_Sample20_distage				
	Image		Comments		
		Sample20	MLS stage scan (X		
		40X - 405- PSF - coverslipcorrect Raw	MLS stage scan (X		

Step 5: Now in the new slide,

Define bounding box for the Data

To perform the reconstruction limited to a specific volume in the sample (to eliminate any outliers or unnecessary data)

1) Home -> Light Sheet -> Multi view Reconstruction -> Bounding Box

- 2) Select Bounding Box Type: Data
- 3) Click Apply after defining bounding box size boundaries

Step 6:

Define Bounding box for PSF

- 4) Home -> Light Sheet -> Multi view Reconstruction -> Bounding Box
- 5) Select Bounding Box Type: PSF
- 6) Click **Apply** after defining bounding box size boundaries. Make sure only a single bead is within the bounding box for every channel.

Step 7: Deconvolution

1) Select the image for deconvolution. Select Home -> Light Sheet -> Deconvolution

2) Select the PSF file and **click Load from Selected Image** under PSF Choose the typical settings for deconvolution as follows:

A	
 slidebookdecon_distice 	MLS Deconvolution ×
Image Comme	19
Sample dislice MLS sli	Channel Selection Time Points Bounding Box Registration
PSF slice 561nm MLS sli	M 56 JA / 56 JB ** 4 124 - 357 - 50 0.93885 - 0.00644 - 0.0120 8.577860 0c m C All 132 379 69 0.06166 0.9038 0.00644 0.01120 8.577860
	Clear Select All Background Select All
	Load from Selected Image Bounding Box Registration Thickness
	Channel Selection -19 110 -7 No Affine Tranform Size in (um) 561A / 561B Image: Compared and the second and the sec
	Background V O Compute Background
	Decon Parameters Vise GPU Number of Iterations 20
	Algorithm i munipocative at Sequential Output File Suffix JPLS_UCH Split Data to Fit in: V RAM V CUDA FFT
	Memory Needed (GB) 2.40991 Number of Z Slabs 1 Close

Change the number of iterations as per the outcome for optimal deconvolution result. **Save the deconvolution result file.**

Export-> 16-bit TIFF if you would like to save TIFF files.

If you want to export the files as TIFF of a stage scan at different orientation (coverslip view):

- 1. Go to Analyze -> Align -> 3 D transform, rotate 90 degrees or 45 degrees.
- 2. Export-> 16-bit TIFF